Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38338873

RESUMO

State-of-the-art Li batteries suffer from serious safety hazards caused by the reactivity of lithium and the flammable nature of liquid electrolytes. This work develops highly efficient solid-state electrolytes consisting of imidazolium-containing polyionic liquids (PILs) and lithium bis(trifluoromethane sulfonyl)imide (LiTFSI). By employing PIL/LiTFSI electrolyte membranes blended with poly(propylene carbonate) (PPC), we addressed the problem of combining ionic conductivity and mechanical properties in one material. It was found that PPC acts as a mechanically reinforcing component that does not reduce but even enhances the ionic conductivity. While pure PILs are liquids, the tricomponent PPC/PIL/LiTFSI blends are rubber-like materials with a Young's modulus in the range of 100 MPa. The high mechanical strength of the material enables fabrication of mechanically robust free-standing membranes. The tricomponent PPC/PIL/LiTFSI membranes have an ionic conductivity of 10-6 S·cm-1 at room temperature, exhibiting conductivity that is two orders of magnitude greater than bicomponent PPC/LiTFSI membranes. At 60 °C, the conductivity of PPC/PIL/LiTFSI membranes increases to 10-5 S·cm-1 and further increases to 10-3 S·cm-1 in the presence of plasticizers. Cyclic voltammetry measurements reveal good electrochemical stability of the tricomponent PIL/PPC/LiTFSI membrane that potentially ranges from 0 to 4.5 V vs. Li/Li+. The mechanically reinforced membranes developed in this work are promising electrolytes for potential applications in solid-state batteries.


Assuntos
Líquidos Iônicos , Propano/análogos & derivados , Lítio , Eletrólitos , Íons , Poli A , Polímeros
2.
ACS Omega ; 8(40): 37413-37420, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37841123

RESUMO

The study describes a simple yet robust methodology for forming gradients in polymer coatings with nanometer-thickness precision. The thickness gradients of 0-20 nm in the coating are obtained by a reactive layer-by-layer assembly of polyester and polyethylenimine on gold substrates. Three parameters are important in forming thickness gradients: (i) the incubation time, (ii) the incubation concentration of the polymer solutions, and (iii) the tilt angle of the gold substrate during the dipping process. After examining these parameters, the characterization of the anisotropic surface obtained under the best conditions is presented in the manuscript. The thickness profile and nanomechanical characterization of the polymer gradients are characterized by atomic force microscopy. The roughness analysis has demonstrated that the coating exhibited decreasing roughness with increasing thickness. On the other hand, Young's moduli of the thin and thick coatings are 0.50 and 1.4 MPa, respectively, which assured an increase in mechanical stability with increasing coating thickness. Angle-dependent infrared spectroscopy reveals that the C-O-C ester groups of the polyesters exhibit a perpendicular orientation to the surface, while the C≡C groups are parallel to the surface. The surface properties of the polymer gradients are explored by fluorescence microscopy, proving that the dye's fluorescence intensity increases as the coating thickness increases. The significant benefit of the suggested methodology is that it promises thickness control of gradients in the coating as a consequence of the fast reaction kinetics between layers and the reaction time.

3.
Langmuir ; 37(37): 10902-10913, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34477388

RESUMO

We here demonstrate the utilization of reactive layer-by-layer (rLBL) assembly to form a nanogel coating made of branched polyethylenimine (BPEI) and alkyne containing polyester (PE) on a gold surface. The rLBL is generated by the rapid aza-Michael addition reaction of the alkyne group of PE and the -NH2 groups of BPEI by yielding a homogeneous gel coating on the gold substrate. The thickness profile of the nanogel revealed that a 400 nm thick coating is formed by six multilayers of rLBL, and it exhibits 50 nm roughness over 8 µm distance. The LBL characteristics were determined via depth profiling analysis by X-ray photoelectron spectroscopy, and it has been shown that a 70-100 nm periodic increase in gel thickness is a consequence of consecutive cycles of rLBL. A detailed XPS analysis was performed to determine the yield of the rLBL reaction: the average yield was deduced as 86.4% by the ratio of the binding energies at 286.26 eV, (C═CN-C bond) and 283.33 eV, (C≡C triple bond). The electrochemical characterization of the nanogels ascertains that up to the six-multilayered rLBL of BPEI-PE is electroactive, and the nanogel permeability had led to drive mass and charge transfer effectively. These results promise that nanogel formation by rLBL films may be a straightforward modification of electrodes approach, and it exhibits potential for the application of soft biointerfaces.


Assuntos
Poliésteres , Polietilenoimina , Nanogéis , Polietilenoglicóis
4.
Langmuir ; 36(24): 6828-6836, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32459493

RESUMO

This study describes surface-assisted (SurfAst) urethane polymerization, providing a modular/postfunctionalizable, biorepellent, electroactive ∼10 to 100 nm-thick polyurethane (PU) interface on a gold surface. SurfAst is a functionalization methodology based on sequential incubation steps of alkane diisocyanates and alkanediol monomers. The gold surface is functionalized by alkane diisocyanates in the first incubation step, and our theoretical calculations reveal that while the isocyanate group atoms (N, C, and O) at one end of the molecule exhibits strong interactions (∼900 meV) with surface atoms, the other end group remains unreacted. After the first incubation step, sequential alkanediol and alkane diisocyanate incubations provide formation of the PU interface. The extensive analysis of the PU interface has been conducted via X-ray photoelectron spectroscopy, and the chemical mapping verifies that the interface is made of PU moieties. The topographical analysis of the surface conducted by the atomic force microscopy shows that the PU interface consists of mostly a nanoporous texture with 150 nm total roughness. The adherence force mapping of the PU interface reveals that the nanoporous matrix exhibits an adhesion force of about 14 nN. The electrostatic force microscopy characterizing long-range electrostatic interactions (40 nm) shows that the PU interface has been attracted by positively charged species as compared to negative objects. Finally, it is demonstrated that the PU interface is readily postfunctionalizable by polyethylene glycol (PEG 1000), serving as a biorepellent interface and preserving electroactivity. We foresee that SurfAst polymerization will have potential for the facile fabrication of a postfunctionalizable and modular biointerface which might be utilized for biosensing and bioelectronic applications.

5.
Talanta ; 209: 120581, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31892020

RESUMO

Conjugated polyelectrolytes (CPEs) have been widely used as reporters in colorimetric assays targeting nucleic acids. CPEs provide naked eye detection possibility by their superior optical properties however, as concentration of target analytes decrease, trace amounts of nucleic acid typically yield colorimetric responses that are not readily perceivable by naked eye. Herein, we report a pixelated analysis approach for correlating colorimetric responses of CPE with nucleic acid concentrations down to 1 nM, in plasma samples, utilizing a smart phone with an algorithm that can perform analytical testing and data processing. The detection strategy employed relies on conformational transitions between single stranded nucleic acid-cationic CPE duplexes and double stranded nucleic acid-CPE triplexes that yield distinct colorimetric responses for enabling naked eye detection of nucleic acids. Cationic poly[N,N,N-triethyl-3-((4-methylthiophen-3-yl)oxy)propan-1-aminium bromide] is utilized as the CPE reporter deposited on a polyvinylidene fluoride (PVDF) membrane for nucleic acid assay. A smart phone application is developed to capture and digitize the colorimetric response of the individual pixels of the digital images of CPE on the PVDF membrane, followed by an analysis using the algorithm. The proposed pixelated approach enables precise quantification of nucleic acid assay concentrations, thereby eliminating the margin of error involved in conventional methodologies adopted for interpretation of colorimetric responses, for instance, RGB analysis. The obtained results illustrate that a ubiquitous smart phone could be utilized for point of care colorimetric nucleic acids assays in complex matrices without requiring sophisticated software or instrumentation.


Assuntos
Colorimetria/métodos , Ácidos Nucleicos/sangue , Polieletrólitos/química , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Cátions/química , Colorimetria/instrumentação , Desenho de Equipamento , Humanos , Ácidos Nucleicos/análise , Papel , Sistemas Automatizados de Assistência Junto ao Leito , Polímeros/química , Polivinil/química , Smartphone , Tiofenos/química
6.
Anal Chem ; 91(16): 10357-10360, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31334629

RESUMO

This letter describes formation of single chain cationic polymer dots (Pdots) made of poly[1,4-dimethyl-1-(3-((2,4,5-trimethylthiophen-3-yl)oxy)propyl)piperazin-1-ium bromide] conjugated polyelectrolyte (CPE). The single chain Pdot formation relies on a simple process which is a rapid nanophase separation between CPE solution of ethylene glycol and water. Pdots show narrow monodisperse size distribution with a 3.6 nm in diameter exhibiting high brightness and excellent colloidal and optical stability. It has been demonstrated that photoluminescent Pdots provide selective nuclear translocation to hepatocellular carcinoma cells as compared to healthy liver cells. The Pdot labeling effectively discriminates cancer cells in the coculture media. Pdots hold great promise as a luminescent probe to diagnose cancer cells in histology and may guide surgeons during operations to precisely separate out cancerous tissue due to augmented fluorescence brightness.


Assuntos
Núcleo Celular/ultraestrutura , Corantes Fluorescentes/química , Hepatócitos/ultraestrutura , Piperazinas/química , Pontos Quânticos/química , Tiofenos/química , Cátions , Linhagem Celular Transformada , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Técnicas de Cocultura , Corantes Fluorescentes/análise , Hepatócitos/metabolismo , Humanos , Imagem Óptica/métodos , Tamanho da Partícula , Piperazinas/análise , Polieletrólitos/química , Pontos Quânticos/análise , Coloração e Rotulagem/métodos , Tiofenos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...